Releasing the next version with those minor changes.
http://sourceforge.net/projects/pythonpowerelec/
http://sourceforge.net/projects/pythonpowerelec/
This blog is about Python Power Electronics - a free and open source software for power electronics and power systems professionals. Aimed at providing education about power electronics application specifically to renewable energy and smart grids, the software will be accompanied by simulation examples, short reports and presentations. The software can found on the website http://www.pythonpowerelectronics.com/.
if params_from_file[c2][0].lower()=="variablestorage": | |
# If it is a variable storage, the dictionary key | |
# will be the variable name. | |
varstore_name=params_from_file[c2][1].split("=")[1] | |
while varstore_name[0]==" ": | |
varstore_name=varstore_name[1:] | |
while varstore_name[-1]==" ": | |
varstore_name=varstore_name[:-1] | |
varstore_val=params_from_file[c2][2].split("=")[1] | |
while varstore_val[0]==" ": | |
varstore_val=varstore_val[1:] | |
while varstore_val[-1]==" ": | |
varstore_val=varstore_val[:-1] | |
try: | |
float(varstore_val) | |
except: | |
pass | |
else: | |
varstore_val=float(varstore_val) | |
varstore_plot=params_from_file[c2][3].split("=")[1] | |
while varstore_plot[0]==" ": | |
varstore_plot=varstore_plot[1:] | |
while varstore_plot[-1]==" ": | |
varstore_plot=varstore_plot[:-1] | |
if varstore_name not in control_file_variablestorage.keys(): | |
control_file_variablestorage[varstore_name]=[varstore_val, varstore_plot] | |
else: | |
print "Multiple definitions of variable storage %s" %varstore_name |
# If there has been a system change or time_event | |
# or if time is greater than the simulation time step. | |
if ((t>=t_ode) or (time_event=="yes")): | |
# Update the input values in u matrix | |
for c1 in range(len(source_list)): | |
component_objects[source_list[c1]].generate_val(source_list, system_loops_copy, sys_mat_e, sys_mat_a, sys_mat_b, sys_mat_u, t, t-t_ode_prev) | |
# The ODE solver. | |
# Will return the x(k+1) value called | |
# as next_state_vec from x(k) value | |
# called curr_state_vec | |
mat_ode(sys_mat_e, sys_mat_a, sys_mat_b, [curr_state_vec, next_state_vec], sys_mat_u, t-t_ode_prev, ode_var, system_loops_copy, node_list) | |
# Update the values of objects based on x(k+1) | |
# So far only ammeter affected by this. | |
for comps in component_objects.keys(): | |
component_objects[comps].update_val(system_loop_map, stiff_ratio, sys_mat_e, sys_mat_a, sys_mat_b, next_state_vec, sys_mat_u, branch_params, branch_events) | |
# Recalculate the branch currents from the loop currents | |
for c1 in range(len(branch_params)): | |
branch_params[c1][-1][2]=0.0 | |
for c2 in range(len(system_loop_map)): | |
if system_loop_map[c2][c1]=="forward" or system_loop_map[c2][c1]=="stiff_forward": | |
branch_params[c1][-1][2]+=next_state_vec.data[c2][0] | |
elif system_loop_map[c2][c1]=="reverse" or system_loop_map[c2][c1]=="stiff_reverse": | |
branch_params[c1][-1][2]-=next_state_vec.data[c2][0] | |
# x(k)=x(k+1) for next iteration. | |
for c1 in range(system_size): | |
curr_state_vec.data[c1][0]=next_state_vec.data[c1][0] | |
# Save the previous time instant of ODE solver | |
t_ode_prev=t | |
# If the above code is running because of a | |
# change in the system and not because of time | |
# greater than t_ode, do not increment the t_ode. | |
if time_event=="yes" and t<t_ode: | |
time_event="no" | |
else: | |
t_ode=t+dt | |
# Store the measured values. | |
if (t>=t_store): | |
f.write("%s " %str(t),) | |
for c1 in range(len(meter_list)): | |
f.write("%s " %component_objects[meter_list[c1]].op_value,) | |
#for c1 in range(len(system_loops_copy)): | |
# f.write("%s " %next_state_vec.data[c1][0],) | |
f.write("\n") | |
t_store=t_store+dt_store | |
# This time vector will contain all the future time events | |
# generated by the control functions and the main ODE solver | |
time_vector=[t_ode] | |
# Call the control codes only if controlled elements exist. | |
if controlled_elements: | |
# Call the control functions in the main control programs. | |
# Use the eval function to call the functions as string arguments | |
for c1 in range(len(control_files)): | |
eval("%s(control_file_inputs, control_file_outputs, control_file_staticvars, control_file_timeevents, component_objects, c1, t, time_vector)" %control_functions[c1]) | |
# The soonest event will be the next time instant. | |
time_vector.sort() | |
t=time_vector[0] |
import math | |
def control_func(interface_inputs, interface_outputs, interface_static, interface_time, circuit_components, pos, t_clock, sys_t_events): | |
Vo=circuit_components['9Q'].op_value | |
x_tri=interface_static[pos]['x_tri'] | |
t1=interface_time[pos]['t1'] | |
import math | |
carr_freq=5000.0 | |
if (x_tri>1.0): | |
x_tri=1.0 | |
if (x_tri<0.0): | |
x_tri=0.0 | |
dt_sample=1.0e-6 | |
try: | |
str(switch_control) | |
except: | |
switch_control=0.0 | |
else: | |
pass | |
if t_clock>=t1: | |
x_tri+=(0.5*carr_freq)*dt_sample | |
if (x_tri>1.0): | |
x_tri=0.0 | |
if (x_tri<0.5): | |
switch_control=1.0 | |
else: | |
switch_control=0.0 | |
t1=t1+dt_sample | |
circuit_components['5C'].control_values[0]=switch_control | |
interface_outputs[pos]['5C'][1][2]=switch_control | |
interface_static[pos]['x_tri']=x_tri | |
interface_time[pos]['t1']=t1 | |
sys_t_events.append(t1) | |
return |
def mat_ode(matrix_e, matrix_a, matrix_b, state_vector, input_vector, dt, ode_vectors, sys_loops, list_of_nodes): | |
""" Solves the ODE using Runge Kutta 4th order method. """ | |
def runge_function4(x_plus_dxdt, ddt_mat, dbydt_order, ode_row): | |
""" Defines the function dx/dt=f(x) for 4th order | |
Runge Kutta solver. """ | |
#Calculate d/dt vector in reverse. | |
#for c1 in range(matrix_e.rows-1, -1, -1): | |
if matrix_e.data[ode_row][ode_row]: | |
try: | |
if input_vector.rows: | |
pass | |
except: | |
if not (matrix_b.columns==1): | |
print "Input signal has to be a real number and not a vector." | |
else: | |
ddt_mat[dbydt_order-1].data[ode_row][0]=matrix_b.data[ode_row][0]*input_vector | |
else: | |
if not (matrix_b.columns==input_vector.rows): | |
print "Dimension of input vector incorrect." | |
else: | |
ddt_mat[dbydt_order-1].data[ode_row][0]=0.0 # Added on Dec. 29, 2012. | |
for c2 in range(matrix_b.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]+=matrix_b.data[ode_row][c2]*input_vector.data[c2][0] | |
if (dbydt_order==2): | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*0.5*ddt_mat[dbydt_order-2].data[c3][0] | |
if (dbydt_order==3): | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*0.5*ddt_mat[dbydt_order-2].data[c3][0] | |
if (dbydt_order==4): | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*ddt_mat[dbydt_order-2].data[c3][0] | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*x_plus_dxdt.data[c3][0] | |
ddt_mat[dbydt_order-1].data[ode_row][0]=ddt_mat[dbydt_order-1].data[ode_row][0]*dt | |
for c3 in range(ode_row+1, matrix_e.columns): | |
# for c3 in range(matrix_e.columns): | |
if not ode_row==c3: | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_e.data[ode_row][c3]*ode_vectors[4].data[c3][0] | |
ddt_mat[dbydt_order-1].data[ode_row][0]=ddt_mat[dbydt_order-1].data[ode_row][0] | |
# ddt_mat[dbydt_order-1].data[ode_row][0]=ddt_mat[dbydt_order-1].data[ode_row][0]/matrix_e.data[ode_row][ode_row] | |
else: | |
if not (matrix_a.data[ode_row][ode_row]): | |
#The variable has no dynamics and can't even be calculated statically! | |
# May be due to a redundant loop. | |
ddt_mat[dbydt_order-1].data[ode_row][0]=0.0 | |
state_vector[0].data[ode_row][0]=0.0 | |
state_vector[1].data[ode_row][0]=0.0 | |
else: | |
ddt_mat[dbydt_order-1].data[ode_row][0]=0.0 | |
state_vector[0].data[ode_row][0]=0.0 | |
state_vector[1].data[ode_row][0]=0.0 | |
try: | |
if input_vector.rows: | |
pass | |
except: | |
if not (matrix_b.columns==1): | |
print "Input signal has to be a real number and not a vector." | |
else: | |
state_vector[0].data[ode_row][0]+=matrix_b.data[ode_row][0]*input_vector | |
state_vector[1].data[ode_row][0]=state_vector[0].data[ode_row][0] | |
else: | |
if not (matrix_b.columns==input_vector.rows): | |
print "Dimension of input vector incorrect." | |
else: | |
for c2 in range(matrix_b.columns): | |
state_vector[0].data[ode_row][0]+=matrix_b.data[ode_row][c2]*input_vector.data[c2][0] | |
state_vector[1].data[ode_row][0]=state_vector[0].data[ode_row][0] | |
for c2 in range(matrix_a.columns): | |
if not (ode_row==c2): | |
state_vector[0].data[ode_row][0]-=matrix_a.data[ode_row][c2]*state_vector[1].data[c2][0] | |
state_vector[1].data[ode_row][0]=state_vector[0].data[ode_row][0] | |
state_vector[0].data[ode_row][0]=state_vector[0].data[ode_row][0]/matrix_a.data[ode_row][ode_row] | |
state_vector[1].data[ode_row][0]=state_vector[0].data[ode_row][0] | |
return | |
def runge_function5(x_plus_dxdt, ddt_mat, dbydt_order, ode_row): | |
""" Defines the function dx/dt=f(x) for higher order | |
ODE solver """ | |
#Calculate d/dt vector in reverse. | |
#for c1 in range(matrix_e.rows-1, -1, -1): | |
if matrix_e.data[ode_row][ode_row]: | |
try: | |
if input_vector.rows: | |
pass | |
except: | |
if not (matrix_b.columns==1): | |
print "Input signal has to be a real number and not a vector." | |
else: | |
ddt_mat[dbydt_order-1].data[ode_row][0]=matrix_b.data[ode_row][0]*input_vector | |
else: | |
if not (matrix_b.columns==input_vector.rows): | |
print "Dimension of input vector incorrect." | |
else: | |
ddt_mat[dbydt_order-1].data[ode_row][0]=0.0 # Added on Dec. 29, 2012. | |
for c2 in range(matrix_b.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]+=matrix_b.data[ode_row][c2]*input_vector.data[c2][0] | |
if (dbydt_order==2): | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*ddt_mat[dbydt_order-2].data[c3][0] | |
if (dbydt_order==3): | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*0.5*ddt_mat[dbydt_order-3].data[c3][0] | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*0.5*ddt_mat[dbydt_order-2].data[c3][0] | |
if (dbydt_order==4): | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*ddt_mat[dbydt_order-4].data[c3][0]*(14.0/64.0) | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*ddt_mat[dbydt_order-3].data[c3][0]*(5.0/64.0) | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*ddt_mat[dbydt_order-2].data[c3][0]*(-3.0/64.0) | |
if (dbydt_order==5): | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*ddt_mat[dbydt_order-5].data[c3][0]*(-12.0/96.0) | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*ddt_mat[dbydt_order-4].data[c3][0]*(-12.0/96.0) | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*ddt_mat[dbydt_order-3].data[c3][0]*(8.0/96.0) | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*ddt_mat[dbydt_order-2].data[c3][0]*(64.0/96.0) | |
if (dbydt_order==6): | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*ddt_mat[dbydt_order-5].data[c3][0]*(-9.0/64.0) | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*ddt_mat[dbydt_order-4].data[c3][0]*(5.0/64.0) | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*ddt_mat[dbydt_order-3].data[c3][0]*(16.0/64.0) | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*ddt_mat[dbydt_order-2].data[c3][0]*(36.0/64.0) | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_a.data[ode_row][c3]*x_plus_dxdt.data[c3][0] | |
ddt_mat[dbydt_order-1].data[ode_row][0]=ddt_mat[dbydt_order-1].data[ode_row][0]*dt | |
for c3 in range(matrix_e.columns): | |
if not ode_row==c3: | |
ddt_mat[dbydt_order-1].data[ode_row][0]-=matrix_e.data[ode_row][c3]*ode_vectors[4].data[c3][0] | |
ddt_mat[dbydt_order-1].data[ode_row][0]=ddt_mat[dbydt_order-1].data[ode_row][0] | |
else: | |
if not (matrix_a.data[ode_row][ode_row]): | |
#The variable has no dynamics and can't even be calculated statically! | |
# May be due to a redundant loop. | |
state_vector[0].data[ode_row][0]=0.0 | |
state_vector[1].data[ode_row][0]=0.0 | |
else: | |
ddt_mat[dbydt_order-1].data[ode_row][0]=0.0 | |
state_vector[0].data[ode_row][0]=0.0 | |
state_vector[1].data[ode_row][0]=0.0 | |
try: | |
if input_vector.rows: | |
pass | |
except: | |
if not (matrix_b.columns==1): | |
print "Input signal has to be a real number and not a vector." | |
else: | |
state_vector[0].data[ode_row][0]+=matrix_b.data[ode_row][0]*input_vector | |
state_vector[1].data[ode_row][0]=state_vector[0].data[ode_row][0] | |
else: | |
if not (matrix_b.columns==input_vector.rows): | |
print "Dimension of input vector incorrect." | |
else: | |
for c2 in range(matrix_b.columns): | |
state_vector[0].data[ode_row][0]+=matrix_b.data[ode_row][c2]*input_vector.data[c2][0] | |
state_vector[1].data[ode_row][0]=state_vector[0].data[ode_row][0] | |
for c2 in range(matrix_a.columns): | |
if not (ode_row==c2): | |
state_vector[0].data[ode_row][0]-=matrix_a.data[ode_row][c2]*state_vector[1].data[c2][0] | |
state_vector[1].data[ode_row][0]=state_vector[0].data[ode_row][0] | |
state_vector[0].data[ode_row][0]=state_vector[0].data[ode_row][0]/matrix_a.data[ode_row][ode_row] | |
state_vector[1].data[ode_row][0]=state_vector[0].data[ode_row][0] | |
return | |
def trapezoidal_mthd(x_plus_dxdt, ddt_mat, dbydt_order): | |
""" Defines the function dx/dt=f(x) for Trapezoidal | |
method. """ | |
#Calculate d/dt vector in reverse. | |
for c1 in range(matrix_e.rows-1, -1, -1): | |
if matrix_e.data[c1][c1]: | |
try: | |
if input_vector.rows: | |
pass | |
except: | |
if not (matrix_b.columns==1): | |
print "Input signal has to be a real number and not a vector." | |
else: | |
ddt_mat[dbydt_order-1].data[c1][0]=matrix_b.data[c1][0]*input_vector | |
else: | |
if not (matrix_b.columns==input_vector.rows): | |
print "Dimension of input vector incorrect." | |
else: | |
ddt_mat[dbydt_order-1].data[c1][0]=0.0 # Added on Dec. 29, 2012. | |
for c2 in range(matrix_b.columns): | |
ddt_mat[dbydt_order-1].data[c1][0]+=matrix_b.data[c1][c2]*input_vector.data[c2][0] | |
for c3 in range(matrix_a.columns): | |
ddt_mat[dbydt_order-1].data[c1][0]-=matrix_a.data[c1][c3]*x_plus_dxdt.data[c3][0] | |
ddt_mat[dbydt_order-1].data[c1][0]=ddt_mat[dbydt_order-1].data[c1][0]*dt | |
for c3 in range(matrix_e.columns): | |
if not c1==c3: | |
ddt_mat[dbydt_order-1].data[c1][0]-=matrix_e.data[c1][c3]*ode_vectors[2].data[c3][0] | |
ddt_mat[dbydt_order-1].data[c1][0]=ddt_mat[dbydt_order-1].data[c1][0] | |
else: | |
if not (matrix_a.data[c1][c1]): | |
#The variable has no dynamics and can't even be calculated statically! | |
# May be due to a redundant loop. | |
ddt_mat[dbydt_order-1].data[c1][0]=0.0 | |
state_vector[0].data[c1][0]=0.0 | |
state_vector[1].data[c1][0]=0.0 | |
else: | |
ddt_mat[dbydt_order-1].data[c1][0]=0.0 | |
state_vector[0].data[c1][0]=0.0 | |
state_vector[1].data[c1][0]=0.0 | |
try: | |
if input_vector.rows: | |
pass | |
except: | |
if not (matrix_b.columns==1): | |
print "Input signal has to be a real number and not a vector." | |
else: | |
state_vector[0].data[c1][0]+=matrix_b.data[c1][0]*input_vector | |
state_vector[1].data[c1][0]=state_vector[0].data[c1][0] | |
else: | |
if not (matrix_b.columns==input_vector.rows): | |
print "Dimension of input vector incorrect." | |
else: | |
for c2 in range(matrix_b.columns): | |
state_vector[0].data[c1][0]+=matrix_b.data[c1][c2]*input_vector.data[c2][0] | |
state_vector[1].data[c1][0]=state_vector[0].data[c1][0] | |
for c2 in range(matrix_a.columns): | |
if not (c1==c2): | |
state_vector[0].data[c1][0]-=matrix_a.data[c1][c2]*state_vector[0].data[c2][0] | |
state_vector[1].data[c1][0]=state_vector[0].data[c1][0] | |
state_vector[0].data[c1][0]=state_vector[0].data[c1][0]/matrix_a.data[c1][c1] | |
state_vector[1].data[c1][0]=state_vector[0].data[c1][0] | |
return | |
# Trapezoidal method | |
## trapezoidal_mthd(state_vector[0], ode_vectors, 2) #k1=dt*(dx/dt) | |
## ode_vectors[2].data[c1][0]=(ode_vectors[0].data[c1][0]+ode_vectors[1].data[c1][0])/2.0 | |
## state_vector[1].data[c1][0]=state_vector[0].data[c1][0]+ode_vectors[2].data[c1][0] | |
## ode_vectors[0].data[c1][0]=ode_vectors[1].data[c1][0] | |
# Runge-Kutta 4th order method | |
for c1 in range(matrix_e.rows-1, -1, -1): | |
runge_function4(state_vector[0], ode_vectors, 1, c1) #k1=dt*(dx/dt) | |
runge_function4(state_vector[0], ode_vectors, 2, c1) #k2=dt*d/dt(x+k1/2) | |
runge_function4(state_vector[0], ode_vectors, 3, c1) #k3=dt*d/dt(x+k2/2) | |
runge_function4(state_vector[0], ode_vectors, 4, c1) #k4=dt*d/dt(x+k3) | |
ode_vectors[4].data[c1][0]=(ode_vectors[0].data[c1][0]+2.0*ode_vectors[1].data[c1][0]+2.0*ode_vectors[2].data[c1][0]+ode_vectors[3].data[c1][0])/6.0 | |
state_vector[1].data[c1][0]=state_vector[0].data[c1][0]+ode_vectors[4].data[c1][0] | |
# Runge-Kutta 5th order method | |
# for c1 in range(state_vector[1].rows): | |
# runge_function5(state_vector[0], ode_vectors, 1, c1) #k1=dt*(dx/dt) | |
# runge_function5(state_vector[0], ode_vectors, 2, c1) #k2=dt*d/dt(x+k1) | |
# runge_function5(state_vector[0], ode_vectors, 3, c1) #k3=dt*d/dt(x+(k1+k2)/2) | |
# runge_function5(state_vector[0], ode_vectors, 4, c1) #k4=dt*d/dt(x+(14k1+5k2-3k3)/64) | |
# runge_function5(state_vector[0], ode_vectors, 5, c1) #k4=dt*d/dt(x+(-12k1-12k2+8k3+64k4)/96) | |
# runge_function5(state_vector[0], ode_vectors, 6, c1) #k4=dt*d/dt(x+(-9k2+5k3+16k4+36k5)/64) | |
# ode_vectors[4].data[c1][0]=(ode_vectors[0].data[c1][0]+2.0*ode_vectors[1].data[c1][0]+2.0*ode_vectors[2].data[c1][0]+ode_vectors[3].data[c1][0])/6.0 | |
# state_vector[1].data[c1][0]=state_vector[0].data[c1][0]+ode_vectors[4].data[c1][0] | |
## ode_vectors[6].data[c1][0]=7.0*ode_vectors[0].data[c1][0] | |
## ode_vectors[6].data[c1][0]+=12.0*ode_vectors[2].data[c1][0] | |
## ode_vectors[6].data[c1][0]+=7.0*ode_vectors[3].data[c1][0] | |
## ode_vectors[6].data[c1][0]+=32.0*ode_vectors[4].data[c1][0] | |
## ode_vectors[6].data[c1][0]+=32.0*ode_vectors[5].data[c1][0] | |
## ode_vectors[6].data[c1][0]=ode_vectors[6].data[c1][0]/90.0 | |
## state_vector[1].data[c1][0]=state_vector[0].data[c1][0]+ode_vectors[6].data[c1][0] | |
return |
def remove_stiffness(matrix_e, matrix_a, matrix_b, dt, sys_loops, branch_info, stiff_info, sys_loop_map, src_list): | |
""" Reduces the stiffness of the ODE by limiting the | |
appearance of stiff branches in the loops.""" | |
# First to find the stiff loops by locating the first branch | |
# that is stiff. After that make all the loops below that loop | |
# have no element for that stiff branch. | |
# To first arrange the loops such that the first branch | |
# that is stiff occurs in the first loop and so on. | |
map_loop_count=0 | |
map_branch_count=0 | |
# Start with the first branch of the first loop. | |
while map_loop_count<len(sys_loop_map): | |
if sys_loop_map[map_loop_count][map_branch_count]=="stiff_forward" or sys_loop_map[map_loop_count][map_branch_count]=="stiff_reverse": | |
loop_found="yes" | |
else: | |
loop_found="no" | |
# If a loop is not found and the branches are not exhausted. | |
while loop_found=="no" and map_branch_count<len(sys_loop_map[0]): | |
# Check if the branch is stiff in the loop. | |
if sys_loop_map[map_loop_count][map_branch_count]=="stiff_forward" or sys_loop_map[map_loop_count][map_branch_count]=="stiff_reverse": | |
loop_found="yes" | |
# If not, look at all the remaining loops corresponding to that branch. | |
# The idea is that if a branch is stiff, it will appear in at least | |
# one loop and so need to look through all loops to make sure it is | |
# not missed. | |
c1=map_loop_count+1 | |
while loop_found=="no" and c1<len(sys_loop_map): | |
if sys_loop_map[c1][map_branch_count]=="stiff_forward" or sys_loop_map[c1][map_branch_count]=="stiff_reverse": | |
for c2 in range(len(sys_loop_map[0])): | |
# If a subsequenct loop is found to have the branch as stiff, | |
# interchange the rows. | |
sys_loop_map[c1][c2], sys_loop_map[map_loop_count][c2] = sys_loop_map[map_loop_count][c2], sys_loop_map[c1][c2] | |
loop_found="yes" | |
c1+=1 | |
# If all loops are exhausted and no element is found as stiff | |
# for the branch, it means the branch is not stiff | |
# or has been accounted in a previous loop. | |
# So move on to the next branch. | |
if loop_found=="no": | |
map_branch_count+=1 | |
# If a loop has been found, the loops need to be made as upper triangular | |
# So all stiff branches in the loops subsequent to the loop will have to eliminated. | |
if loop_found=="yes": | |
for c1 in range(map_loop_count+1, len(sys_loop_map)): | |
if sys_loop_map[c1][map_branch_count]=="stiff_forward" or sys_loop_map[c1][map_branch_count]=="stiff_reverse": | |
# This is simply row operation of loops. | |
if sys_loop_map[map_loop_count][map_branch_count]==sys_loop_map[c1][map_branch_count]: | |
for c2 in range(len(sys_loop_map[0])): | |
if sys_loop_map[map_loop_count][c2]=="forward" and sys_loop_map[c1][c2]=="forward": | |
sys_loop_map[c1][c2]="no" | |
elif sys_loop_map[map_loop_count][c2]=="reverse" and sys_loop_map[c1][c2]=="reverse": | |
sys_loop_map[c1][c2]="no" | |
elif sys_loop_map[map_loop_count][c2]=="reverse" and sys_loop_map[c1][c2]=="no": | |
sys_loop_map[c1][c2]="forward" | |
elif sys_loop_map[map_loop_count][c2]=="forward" and sys_loop_map[c1][c2]=="no": | |
sys_loop_map[c1][c2]="reverse" | |
elif sys_loop_map[map_loop_count][c2]=="stiff_forward" and sys_loop_map[c1][c2]=="stiff_forward": | |
sys_loop_map[c1][c2]="no" | |
elif sys_loop_map[map_loop_count][c2]=="stiff_reverse" and sys_loop_map[c1][c2]=="stiff_reverse": | |
sys_loop_map[c1][c2]="no" | |
elif sys_loop_map[map_loop_count][c2]=="stiff_reverse" and sys_loop_map[c1][c2]=="no": | |
sys_loop_map[c1][c2]="stiff_forward" | |
elif sys_loop_map[map_loop_count][c2]=="stiff_forward" and sys_loop_map[c1][c2]=="no": | |
sys_loop_map[c1][c2]="stiff_reverse" | |
else: | |
for c2 in range(len(sys_loop_map[0])): | |
if sys_loop_map[map_loop_count][c2]=="forward" and sys_loop_map[c1][c2]=="reverse": | |
sys_loop_map[c1][c2]="no" | |
elif sys_loop_map[map_loop_count][c2]=="reverse" and sys_loop_map[c1][c2]=="forward": | |
sys_loop_map[c1][c2]="no" | |
elif sys_loop_map[map_loop_count][c2]=="reverse" and sys_loop_map[c1][c2]=="no": | |
sys_loop_map[c1][c2]="reverse" | |
elif sys_loop_map[map_loop_count][c2]=="forward" and sys_loop_map[c1][c2]=="no": | |
sys_loop_map[c1][c2]="forward" | |
elif sys_loop_map[map_loop_count][c2]=="stiff_forward" and sys_loop_map[c1][c2]=="stiff_reverse": | |
sys_loop_map[c1][c2]="no" | |
elif sys_loop_map[map_loop_count][c2]=="stiff_reverse" and sys_loop_map[c1][c2]=="stiff_forward": | |
sys_loop_map[c1][c2]="no" | |
elif sys_loop_map[map_loop_count][c2]=="stiff_reverse" and sys_loop_map[c1][c2]=="no": | |
sys_loop_map[c1][c2]="stiff_reverse" | |
elif sys_loop_map[map_loop_count][c2]=="stiff_forward" and sys_loop_map[c1][c2]=="no": | |
sys_loop_map[c1][c2]="stiff_forward" | |
# Increment the loop count and make the branch count equal that | |
# So the default is a diagonal stiff element. | |
map_loop_count+=1 | |
map_branch_count=map_loop_count | |
# This is to make sure, that stiff loops | |
# are connected to an input. | |
for c1 in range(len(sys_loop_map)): | |
is_loop_stiff="no" | |
has_input="no" | |
for c3 in range(len(branch_info)): | |
#if branch_info[c3][:-1]==sys_loops[c1][c1][c2][:-1]: | |
if sys_loop_map[c1][c3]=="stiff_forward" or sys_loop_map[c1][c3]=="stiff_reverse": | |
is_loop_stiff="yes" | |
# Check if any branch has a non-zero B matrix entry. | |
for c4 in range(len(branch_info[c3][-1][1])): | |
if branch_info[c3][-1][1][c4]: | |
has_input="yes" | |
# If loop is stiff and has no input | |
if is_loop_stiff=="yes" and has_input=="no": | |
c2=0 | |
flag_input="no" | |
# Check all other loops whether they are stiff | |
# and whether they have inputs. | |
while flag_input=="no" and c2<len(sys_loop_map): | |
if not c1==c2: | |
is_loop_stiff="no" | |
flag_input="no" | |
for c4 in range(len(branch_info)): | |
if sys_loop_map[c2][c4]=="stiff_forward" or sys_loop_map[c2][c4]=="stiff_reverse": | |
is_loop_stiff="yes" | |
if is_loop_stiff=="no": | |
for c5 in range(len(branch_info[c4][-1][1])): | |
if branch_info[c4][-1][1][c5]: | |
flag_input="yes" | |
c2=c2+1 | |
# Perform a row operation with a loop that is non-stiff | |
# and has an input. | |
if is_loop_stiff=="no" and flag_input=="yes": | |
c2=c2-1 | |
#loop_manipulate(sys_loops, c1, c2, "add") | |
# Update the sys_loop_map info | |
for c3 in range(len(branch_info)): | |
if sys_loop_map[c1][c3]=="forward" and sys_loop_map[c2][c3]=="reverse": | |
sys_loop_map[c1][c3]="no" | |
elif sys_loop_map[c1][c3]=="reverse" and sys_loop_map[c2][c3]=="forward": | |
sys_loop_map[c1][c3]="no" | |
elif sys_loop_map[c1][c3]=="forward" and sys_loop_map[c2][c3]=="no": | |
sys_loop_map[c1][c3]="forward" | |
elif sys_loop_map[c1][c3]=="reverse" and sys_loop_map[c2][c3]=="no": | |
sys_loop_map[c1][c3]="reverse" | |
elif sys_loop_map[c1][c3]=="stiff_forward" and sys_loop_map[c2][c3]=="stiff_reverse": | |
sys_loop_map[c1][c3]="no" | |
elif sys_loop_map[c1][c3]=="stiff_reverse" and sys_loop_map[c2][c3]=="stiff_forward": | |
sys_loop_map[c1][c3]="no" | |
elif sys_loop_map[c1][c3]=="stiff_forward" and sys_loop_map[c2][c3]=="no": | |
sys_loop_map[c1][c3]="stiff_forward" | |
elif sys_loop_map[c1][c3]=="stiff_reverse" and sys_loop_map[c2][c3]=="no": | |
sys_loop_map[c1][c3]="stiff_reverse" | |
# Get rid of repeating loops by setting all branches "no" | |
for c1 in range(len(sys_loop_map)-1): | |
for c2 in range(c1+1, len(sys_loop_map)): | |
loop_repeats="yes" | |
for c3 in range(len(sys_loop_map[c1])): | |
if not sys_loop_map[c1][c3]==sys_loop_map[c2][c3]: | |
loop_repeats="no" | |
if loop_repeats=="yes": | |
for c3 in range(len(sys_loop_map[c2])): | |
sys_loop_map[c2][c3]="no" | |
# Re-initialize the matrices A, B, and E | |
matrix_a.zeros(len(sys_loops),len(sys_loops)) | |
matrix_e.zeros(len(sys_loops),len(sys_loops)) | |
matrix_b.zeros(len(sys_loops),matrix_b.columns) | |
# Recalculate the matrices for the new system loops. | |
recalculate_sys_matrices(sys_loop_map, branch_info, matrix_a, matrix_e, matrix_b) | |
for c1 in range(matrix_a.rows): | |
for c2 in range(matrix_a.columns): | |
if abs(matrix_a.data[c1][c2])<1.0e-10: | |
matrix_a.data[c1][c2]=0.0 | |
for c1 in range(matrix_e.rows): | |
for c2 in range(matrix_e.columns): | |
if abs(matrix_e.data[c1][c2])<1.0e-10: | |
matrix_e.data[c1][c2]=0.0 | |
for c1 in range(matrix_b.rows): | |
for c2 in range(matrix_b.columns): | |
if abs(matrix_b.data[c1][c2])<1.0e-10: | |
matrix_b.data[c1][c2]=0.0 | |
return |
def update_val(self, sys_loop_map, lbyr_ratio, mat_e, mat_a, mat_b, state_vec, mat_u, sys_branches, sys_events): | |
""" This function calculates the actual current in the | |
diode branch. With this, the branch voltage is found | |
with respect to the existing diode resistance. The diode | |
voltage is then used to decide the turn on condition. """ | |
for c1 in range(len(sys_branches)): | |
if csv_tuple(self.pos) in sys_branches[c1]: | |
branch_pos=c1 | |
self.current=0.0 | |
for c1 in range(len(sys_loop_map)): | |
# If diode cathode is after the voltmeter | |
# position, it means current is positive. | |
if sys_branches[branch_pos].index(self.polrty)>sys_branches[branch_pos].index(csv_tuple(self.pos)): | |
# Then check is the loop is aiding or opposing | |
# the main loop. | |
if sys_loop_map[c1][branch_pos]=="forward" or sys_loop_map[c1][branch_pos]=="stiff_forward": | |
self.current+=state_vec.data[c1][0] | |
elif sys_loop_map[c1][branch_pos]=="reverse" or sys_loop_map[c1][branch_pos]=="stiff_reverse": | |
self.current-=state_vec.data[c1][0] | |
else: | |
if sys_loop_map[c1][branch_pos]=="forward" or sys_loop_map[c1][branch_pos]=="stiff_forward": | |
self.current-=state_vec.data[c1][0] | |
elif sys_loop_map[c1][branch_pos]=="reverse" or sys_loop_map[c1][branch_pos]=="stiff_reverse": | |
self.current+=state_vec.data[c1][0] | |
self.voltage=self.current*self.resistor | |
# Diode will turn on when it is forward biased | |
# and it was previously off. | |
if self.status=="off" and self.voltage>1.0: | |
sys_events[branch_pos]="yes" | |
self.status="on" | |
# Diode will turn off only when current becomes | |
# negative. | |
if self.status=="on" and self.current<-1.0e-5: | |
sys_events[branch_pos]="yes" | |
self.status="off" | |
if self.status=="off": | |
self.resistor=self.resistor_off | |
else: | |
self.resistor=self.resistor_on | |
return |
# In the above nodal analysis, the inductor currents and the currents | |
# through branches containing a voltage source are considered as | |
# current sources. Finally, the branch currents calculated are the | |
# currents with resistances or stiff branches where inductance is negligible. | |
# But this leaves out the short branches or "wires". There is no means | |
# to calculate the current through them as they do not have a resistance. | |
# So the next part does that merely by using KCL, currents at a node | |
# must be zero. | |
# This is a list of the short branches or "wires" | |
short_branch_list=[] | |
for c1 in range(len(branch_info)): | |
if branch_info[c1][-1][0][0]==0.0 and branch_info[c1][-1][0][1]==0.0: | |
if ((1.0 not in branch_info[c1][-1][1]) and (-1.0 not in branch_info[c1][-1][1])): | |
short_branch_list.append(c1) | |
# This is a matrix showing the presence of short branches | |
connectivity_short=[] | |
# This is a vector with the remaining currents calculated | |
# above by nodal analysis at a node. | |
connectivity_src=[] | |
for c1 in range(len(list_of_nodes)): | |
row_vector=[] | |
connectivity_src.append(0.0) | |
for c1 in range(len(branch_info)): | |
row_vector.append(0.0) | |
connectivity_short.append(row_vector) | |
for c1 in range(len(list_of_nodes)): | |
for c2 in range(len(branch_info)): | |
# Check if this branch is a short branch | |
is_short_node="no" | |
if branch_info[c2][-1][0][0]==0.0 and branch_info[c2][-1][0][1]==0.0: | |
if ((1.0 not in branch_info[c2][-1][1]) and (-1.0 not in branch_info[c2][-1][1])): | |
is_short_node="yes" | |
# If it is, then this will apear in the connectivity matrix | |
# If the branch originates at the node, it is taken with | |
# a minus sign because it is on the other side of the KCL equation. | |
if list_of_nodes[c1]==branch_info[c2][0]: | |
connectivity_short[c1][c2]=-1.0 | |
if list_of_nodes[c1]==branch_info[c2][-2]: | |
connectivity_short[c1][c2]=1.0 | |
if is_short_node=="no": | |
# If it is not a short branch, add the currents calculated in KCL | |
# to the source vector. | |
if list_of_nodes[c1]==branch_info[c2][0]: | |
connectivity_src[c1]+=br_currents[c2] | |
if list_of_nodes[c1]==branch_info[c2][-2]: | |
connectivity_src[c1]-=br_currents[c2] | |
# Iterate through the short branch list | |
c2=0 | |
# Iterate through each node - each row of connectivity_short. | |
for c1 in range(len(list_of_nodes)): | |
# Check if the row and branch number of the short branch is 1.0 | |
# This should be because if it is a short branch, there should | |
# be a 1 or a -1 somewhere in that column for short branch number. | |
if not connectivity_short[c1][short_branch_list[c2]]: | |
# If not, go through all the remaining nodes to check | |
# if any subsequent row has a nonzero. | |
for c3 in range(c1+1, len(list_of_nodes)): | |
if connectivity_short[c3][short_branch_list[c2]]: | |
# If so, interchange the two rows. | |
for c4 in range(len(connectivity_short[c1])): | |
connectivity_short[c1][c4], connectivity_short[c3][c4] = connectivity_short[c3][c4], connectivity_short[c1][c4] | |
connectivity_src[c1], connectivity_src[c3] = connectivity_src[c3], connectivity_src[c1] | |
# If all the short branches are not exhausted, increment c2. | |
if c2<len(short_branch_list)-1: | |
c2+=1 | |
# The above row interchanges will gurantee the first rows | |
# equal to the number of short branches will have nonzero | |
# entries corresponding to the short branches. | |
# Now, a row operation will be performed to make all other rows zero. | |
# This will make connectivity_short upper triangular. | |
# Once again iterate through the short branch list | |
for c1 in range(len(short_branch_list)): | |
# Go through all the remaining rows with the aim | |
# of making all entries of the short branch zero. | |
for c2 in range(c1, len(list_of_nodes)-1): | |
if connectivity_short[c2][short_branch_list[c1]]: | |
for c3 in range(c1+1, len(list_of_nodes)): | |
if connectivity_short[c3][short_branch_list[c1]]: | |
short_factor=connectivity_short[c3][short_branch_list[c1]] | |
for c4 in short_branch_list: | |
connectivity_short[c3][c4]-=connectivity_short[c2][c4]*short_factor/connectivity_short[c2][short_branch_list[c1]] | |
connectivity_src[c3]-=connectivity_src[c2]*short_factor/connectivity_short[c2][short_branch_list[c1]] | |
# Initialize a list of short branch currents | |
short_branch_currents=[] | |
for c1 in short_branch_list: | |
short_branch_currents.append(0.0) | |
# Calculate the short branch currents in reverse as | |
# an the matrices were made upper triangular by previous row | |
# operation. | |
for c1 in range(len(short_branch_list)-1, -1, -1): | |
short_branch_currents[c1]=connectivity_src[c1] | |
for c2 in range(len(short_branch_list)-1, c1, -1): | |
short_branch_currents[c1]-=connectivity_short[c1][short_branch_list[c2]]*short_branch_currents[c2] | |
short_branch_currents[c1]=short_branch_currents[c1]/connectivity_short[c1][short_branch_list[c1]] | |
# The remaining elements in branch currents are filled. | |
# These were zero before. | |
for c1 in range(len(short_branch_list)): | |
br_currents[short_branch_list[c1]]=short_branch_currents[c1] |