Friday, April 20, 2018

Virtual environments and HOW-TO videos

The first major issue that most people have with a new software is being able to install and execute it. To make this process easier, I make two video lectures on how to install Python Power Electronics in Windows and Linux. I am a Linux user but a vast majority of engineers will be Windows users.

In Windows, I used Anaconda Python which is an entire Python ecosystem. You can download and install it for free on your computer. After which you can create an environment. The advantage of creating an environment is to be able to create a separate isolated container for a particular application. This is particularly when you use your computer for work or study with a different version of Python and do not want an experimental software from messing up your work system. Inside this environment install Django and MatPlotLib which are dependencies for Python Power Electronics besides  Python. The entire video is here:
https://www.youtube.com/watch?v=JRKUenYBIA4&feature=youtu.be


In Linux, I use virtualenv to create a similar Python virtual environment. Inside this environment, I use pip to install Django and MatPlotLib. The entire video can be found here:
https://www.youtube.com/watch?v=jM28A2MD8u4&feature=youtu.be


Now that these lectures describe how to install Python Power Electronics in Windows and Linux, the next part will be on how to simulate a circuit with it. There are three aspects to this. First is the basic circuit simulation. How would you simulate a circuit without any control. Just the circuit, the parameters of the components and how to run it and check the results. This video describes that:
https://www.youtube.com/watch?v=Vv0wYq0BPsU&feature=youtu.be

The next video will describe how to detect and fix bugs in a simulation. There are a few common mistakes that are made quite often and can be fixed fairly easily. The more complex errors are those that occur due to control problems and these are a bit tough to decode. Control problems will be deferred to a later video lecture along with describing how control can be included in a simulation.

Friday, April 13, 2018

The road ahead in 2018

There has been a lot of changes this year and also the past year. Moved to Germany last year in May 2017 and came back in March 2018. Now that I have published a book with Springer, I would like to keep publishing and would not like my first book to be my last. And with this, I need to set some goals particularly for this year.

To begin with, I plan to create video lectures on my YouTube channel fairly regularly. The link to the channel is:
https://www.youtube.com/channel/UCxVbKNK18A_a9Ohd0Kb7kNA

Feel free to subscribe and check out what will be uploaded there. I find that creating a video lecture helps to put together my thoughts for more elaborate reports and tutorials.

My plan is to create mini books in different topics in power electronics, bringing together similar topics or breaking a large topic into smaller sub-topics. Each book will be introduced with a series of video lectures and accompanied by a simulation package. I am planning the first mini-book on simulating many of the known topologies of dc-dc converters.

The theme of these books will be description from fundamental concepts with the minimal amount of mathematical analysis. The reason for doing so is to make power electronics learning accessible to working people who have limited time and energy after their day jobs.

And of course, if you would like to read all about the circuit simulator, feel free to check out my book on circuit simulation:
http://www.springer.com/us/book/9783319739830

Most of the updates to the project will be on my Facebook page:
https://www.facebook.com/pythonpowerelectronics/

So feel free to like and follow the page for regular updates.